Qu	esti	ion	Expected answers	Marks	Additional guidance
1	1 a		Complete circuit with electrodes to voltmeter AND salt bridge between solutions ✓		circuit shown must be complete, i.e. must be capable of working salt bridge must be labelled. electrodes AND salt bridge must dip into/touch both solutions ALLOW cells drawn either way around
			Fe ³⁺ /Fe ²⁺ half-cell with Pt electrode AND 1 mol dm ⁻³ /1 M Fe ²⁺ and 1 mol dm ⁻³ /1 M Fe ³⁺ ✓ Ni electrode in (1 mol dm ⁻³) Ni ²⁺ half-cell ✓	3	ALLOW Fe ³⁺ /Fe ²⁺ 1 mol dm ⁻³ /1 M /1 molar ALLOW BOTH solutions same concentration/equimolar DO NOT ALLOW 1 mol OR 1 dm ⁻³ IGNORE any temperature or pressure, even if wrong
		ii	1.02 V AND – sign ✓	_	IGNORE any sign BEFORE cell potential
			0.49 V AND + sign ✓	2	ALLOW 1 mark for correct values AND signs BOTH the wrong way round: i.e.1.02 V AND + sign AND 0.49 V AND - sign
	b		Cell A (based on 1 and 2) Ni + 2Fe ³⁺ → Ni ²⁺ + 2Fe ²⁺ ✓		In equations, ALLOW equilibrium sign, \Rightarrow instead of \rightarrow Equations are required for the first two marking points ALLOW Ni \longrightarrow Ni ²⁺ + 2e ⁻
			Cell B (based on 1 and 3) 2Cr + 3Ni ²⁺ → 2Cr ³⁺ + 3Ni ✓		ALLOW $Ni^{2+} + 2e^{-} \longrightarrow Ni$
			concentrations (of the ions in each cell) change OR concentrations are not standard ✓	3	ALLOW any statement that a concentration is changing IGNORE 'non-standard conditions'
	С	i	$MH + OH^- \longrightarrow M + H_2O + e^- \checkmark$	1	ALLOW MH \longrightarrow M + H ⁺ + e ⁻
		ii	OR as a liquid under pressure ✓	1	DO NOT ALLOW adsorbed into the solid CON DO NOT ALLOW just 'as a liquid'
			Total	10	

Qu	esti	ion	Expected answers	Marks	Additional guidance
2	а		$Fe_2O_3 + 6H^+ \longrightarrow 2Fe^{3+} + 3H_2O \checkmark$	1	ALLOW $Fe_2O_3 + 6HCI \longrightarrow 2FeCl_3 + 3H_2O$ OR $Fe_2O_3 + 6HCI \longrightarrow 2Fe^{3+} + 6CI^- + 3H_2O$ ALLOW correct multiples IGNORE state symbols DO NOT ALLOW Fe_2Cl_6 as a product
	b		$Sn^{2+} + 2Fe^{3+} \longrightarrow Sn^{4+} + 2Fe^{2+} \checkmark$ $6Fe^{2+} + Cr_2O_7^{2-} + 14H^+ \longrightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O \checkmark$	2	IGNORE state symbols ALLOW overall equations: $SnCl_2 + 2FeCl_3 \longrightarrow SnCl_4 + 2FeCl_2$ $6FeCl_2 + K_2Cr_2O_7 + 14HCl \rightarrow 6FeCl_3 + 2CrCl_3 + 2KCl + 7H_2O$ ALLOW correct multiples

Qu	esti	on	Expected answers	Marks	Additional guidance
	С		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 54.6%, award 5 marks		ANNOTATIONS MUST BE USED IF there is an alternative answer, 1st check common errors below. Then see if there is any ECF credit possible using working below
			Amount Fe ²⁺ in 250 cm ³ solution – 3 marks amount $Cr_2O_7^{2-}$ used = $0.0200 \times \frac{26.5}{1000}$ = 5.30×10^{-4} (mol) \checkmark amount Fe ²⁺ = $6 \times 5.30 \times 10^{-4}$ = 3.18×10^{-3} mol \checkmark amount Fe ²⁺ in original 250 cm ³ = $10 \times 3.18 \times 10^{-3}$ = 3.18×10^{-2} (mol) \checkmark		Working must be to at least 3 SF throughout BUT ignore trailing zeroes, <i>i.e.</i> for 0.490 allow 0.49 ALLOW ECF from different Fe ²⁺ ratio in equation from 8(b) BUT still ALLOW 6: 1 even from different ratio in equation If no equation use actual 6: 1 ratio DO NOT AWARD 'ratio mark' at all for use of 1: 1 ratio - makes problem easier ECF 10 × answer above
			% Fe in ore – 2 marks mass of Fe in ore = 55.8 × 3.18 × 10 ⁻² g = 1.77444 g ✓		IF answer above has not been used AND × 55.8, DO NOT ALLOW this mark but do ALLOW final % IF answer above AND 55.8 are BOTH not used, then DO NOT ALLOW ANY further marks
			percentage Fe in ore = \frac{1.77444}{3.25} × 100 = 54.6% ✓	5	ECF \frac{\text{answer above}}{3.25} \times 100 ALLOW 54.5% (from 1.77 g) AND any answer with > 1 decimal place that rounds back to 54.5 OR 54.6
					COMMON ERRORS 5.46 ✓✓✓✓ × 10 omitted 51.5 ✓✓✓✓ titre taken as 25.0 156.2 ✓✓✓✓ × 159.6 instead of 55.8 15.62 ✓✓✓ × 159.6 and × 10 omitted 45.5 ✓✓✓ 5 : 1 ratio 1.52 ✓✓✓ ÷ 6 instead of × 6

Qu	Question		Expected answers	Marks	Additional guidance
	d		E° for MnO ₄ ⁻ is more positive/greater than Cl ₂ OR E° for Cr ₂ O ₇ ²⁻ is less positive/smaller than Cl ₂ \checkmark MnO ₄ ⁻ reacts with Cl ⁻ OR HCl (forming Cl ₂ gas) OR Cr ₂ O ₇ ²⁻ does not react with Cl ⁻ ions \checkmark	2	ORA: E° for Cl_2 is less positive/smaller than MnO_4^- OR E° for Cl_2 is more positive/greater than $Cr_2O_7^{2-}$
			Total	10	

Quest	ion	Answer	Mark	Guidance
3 (a)	(i)	Complete circuit with electrodes to voltmeter AND salt bridge between solutions ✓ Sn ⁴⁺ /Sn ²⁺ half cell with Pt electrode AND both solutions labelled as 1 mol dm ⁻³ / 1M H ⁺ /H ₂ half cell with Pt electrode AND H ⁺ solution labelled as 1 mol dm ⁻³ / 1M ✓	3	ANNOTATE WITH TICKS AND CROSSES, etc circuit shown must be complete, <i>ie</i> must be capable of working salt bridge must be labelled and must dip into both solutions ALLOW concentration label of 'equimolar' or similar wording for Sn ⁴⁺ /Sn ²⁺ half cell ALLOW any strong acid IF both half cells are correct with no concentrations, ALLOW 1 out of the 2 marks available for the 2 half cells
	(ii)	$2Cr + 3Sn^{4+} \rightarrow 2Cr^{3+} + 3Sn^{2+} \checkmark$ $Cr + 3Cu^{+} \rightarrow Cr^{3+} + 3Cu \checkmark$ $Sn^{2+} + 2Cu^{+} \rightarrow Sn^{4+} + 2Cu \checkmark$ Conditions not standard $\mathbf{OR} \text{ concentrations not 1 mol dm}^{-3} \checkmark$ High activation energy \mathbf{OR} slow rate \checkmark	5	ANNOTATE WITH TICKS AND CROSSES, etc Correct species AND balancing needed for each mark ALLOW equations as shown with equilibrium sign ALLOW multiples but electrons must not be shown IF three equations have correct species but no balancing, AWARD 1 mark ALLOW not favoured kinetically
(b)	(i)	CH ₃ OH + $1\frac{1}{2}$ O ₂ \rightarrow CO ₂ + 2H ₂ O \checkmark	1	Correct species AND balancing needed ALLOW multiple, <i>ie</i> 2CH ₃ OH + 3O ₂ → 2CO ₂ + 4H ₂ O ALLOW CH ₄ O for formula of methanol
	(ii)	$CH_3OH + H_2O \rightarrow 6H^+ + 6e^- + CO_2 \checkmark$	1	
	(iii)	less CO₂ OR less greenhouse gases ✓ greater efficiency ✓	2	ALLOW no CO ₂ OR no greenhouse gases ALLOW (very) efficient IGNORE less pollution OR 'renewable fuels'
	(iv)	methanol is a liquid AND methanol is easier to store/transport ✓	1	Both points required for mark Response MUST state that methanol is a liquid IGNORE methanol has a higher boiling point Assume that 'it' refers to methanol IGNORE safety issues, eg H ₂ leakage, flammability, explosive
		Total	13	

Question	Answer	Marks	Guidance
4 (a) (i)	Fe'(g) + 2I'(g) \checkmark Fe(g) + 2I(g) \checkmark Fe(s) + I ₂ (s) \checkmark Mark each marking point independently	4	Correct species AND state symbols required for each marks ALLOW e for e TAKE CARE: In top left box, e may be in centre of response and more difficult to see than at end. There is only ONE correct response for each line From the gaps in the cycle, there is NO possibility of any ECF

Q	Question		Answer	Marks	Guidance
	(a)	(ii)	(The enthalpy change that accompanies) the formation of one mole of a(n ionic) compound from its gaseous ions (under standard conditions) ✓✓	2	IGNORE 'Energy needed' OR 'energy required' ALLOW one mole of compound is formed/made from its gaseous ions ALLOW as alternative for compound: lattice, crystal,
			Award marks as follows. 1st mark: formation of compound from gaseous ions 2nd mark: one mole for compound only		substance, solid
			DO NOT ALLOW 2nd mark without 1st mark		ALLOW 1 mark for absence of 'gaseous' only, i.e. the formation of one mole of a(n ionic) compound from its ions (under standard conditions) ✓
			DO NOT ALLOW any marks for a definition for enthalpy change of formation BUT note the two concessions in guidance		ALLOW 1 mark for $\Delta H_{\rm f}$ definition with 'gaseous': the formation of one mole of a(n ionic) compound from its gaseous elements (under standard conditions) \checkmark

uestion	Answer	Marks	Guidance
(a) (iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -2473 (kJ mol ⁻¹) award 2 marks	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below. See list below for marking of answers from common errors
(b) (i)	Fe ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁶ ✓ Br ⁻ : 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ² 4p ⁶ ✓	2	ALLOW 4s before 3d, ie 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ ALLOW 1s ² written after answer prompt (<i>ie</i> 1s ² twice) ALLOW upper case D, etc and subscripts, e.g4S ₂ 3D ALLOW for Fe ²⁺ 4s ⁰ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ Look carefully at 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ – there may be a mistake

Question	Answer	Marks	Guidance
(b) (ii)			FULL ANNOTATIONS NEEDED
	With Cl ₂ AND Br ₂ AND I ₂ products are Fe ²⁺ (AND halide ion) FeCl ₂ AND FeBr ₂ AND FeI ₂ ✓		ALLOW products within equations (even if equations are not balanced) IF stated, IGNORE reactants
	OR Evidence that two electrode potentials have been compared for at least ONE reaction, ✓ e.g. Fe −0.44 AND Cl ₂ +1.36 e.g. Iron has more/most negative electrode potential	2	ALLOW response in terms of positive 'cell reactions', e.g Fe + Cl ₂ \rightarrow Fe ²⁺ + 2Cl ⁻ E = (+)1.80 V IGNORE comments about reducing and oxidising agents and electrons
	With Cl ₂ AND Br ₂ , products are Fe ³⁺ (AND halide ion) FeCl ₃ AND FeBr ₃ ✓	3	
(c)	BRTH EQUATIONS REQUIRE IONS PROVIDED IN QUESTION Reaction 1: 2 marks		ALLOW correct multiples throughout ALLOW equilibrium signs in all equations
	1st mark for ALL CORRECT species e.g.: $Fe^{2^+} + NO_3^- + H^+ \rightarrow Fe^{3^+} + NO + H_2O$		For 1st mark, IGNORE e ⁻ present
	2nd mark for CORRECT balanced equation $3Fe^{2+} + NO_3^- + 4H^+ \rightarrow 3Fe^{3+} + NO + 2H_2O \checkmark\checkmark$		
	Reaction 2: 1 mark ${}_{2}O)_{6}]^{2+}$ + NO → [Fe(H ₂ O) ₅ NO] ²⁺ + H ₂ O ✓	3	Check carefully for correct charges
	[Fe(H Total	16	